S M Nazmuz Sakib's Holistic Microbial Intelligence and Symbiotic Cognition Theory (HMISCT): Integrating Non-Equilibrium Microbial Dynamics and AIDriven Insights
Abstract
The Holistic Microbial Intelligence and Symbiotic Cognition Theory (HMISCT) posits that microorganisms exhibit adaptive behaviors that reflect a form of intelligence, particularly through mechanisms such as quorum sensing, biofilm formation, and collective decision-making. This theory emphasizes the co-evolution of the host organism and its microbiome as a unified, symbiotic entity known as the holobiont. Recent advancements in microbiology suggest that microbial communities operate in non-equilibrium states, influenced by both biotic and abiotic factors, contributing to the overall intelligence of the holobiont. Furthermore, artificial intelligence (AI) techniques, such as machine learning and deep learning, offer new avenues for exploring microbial interactions and predicting community behaviors. By combining these insights, this integrated theory proposes a dynamic, adaptive system where microbial intelligence, shaped by ecological and host interactions, plays a crucial role in evolutionary processes and host survival.
References
1. Alum, E. U., Gulumbe, B. H., Izah, S. C., Uti, D. E., Aja, P. M., Igwenyi, I. O., &
Offor, C. E. (2025). Natural product-based inhibitors of quorum sensing: A novel
approach to combat antibiotic resistance. Biochemistry and Biophysics Reports,
43, 102111. https://doi.org/10.1016/j.bbrep.2025.102111
2. Bouwmeester, H., Dong, L., Wippel, K., Hofland, T., & Smilde, A. (2025). The
chemical interaction between plants and the rhizosphere microbiome. Trends in
Plant Science. https://doi.org/10.1016/j.tplants.2025.06.001
3. Brandt, T. J. (2025). Forms of life: a literary formalist view on biological
individuality. History & Philosophy of the Life Sciences, 47(2).
https://doi.org/10.1007/s40656-025-00671-9
4. Chen, S., & Wu, T. (2025). Progression and prospects of machine learning
techniques in nanotoxicology: riding the AI-driven wave. Toxicology Mechanisms
and Methods, 1–32. https://doi.org/10.1080/15376516.2025.2536659
5. Das, D., Ingti, B., Paul, P., Jamatia, J. P., Ete, T., Khan, T., & Kalita, J. (2025).
Soil microbial dynamics in response to the impact of nanoparticles on agricultural
implications. Discover Soil., 2(1). https://doi.org/10.1007/s44378-025-00087-8
6. De Silva, S., Gamage, L. K. H., & Thapa, V. R. (2025). Impact of drought on soil
microbial communities. Microorganisms, 13(7), 1625.
https://doi.org/10.3390/microorganisms13071625
7. Durgadevi, P., Girigoswami, K., & Girigoswami, A. (2025). Photophysical
Process of Hypocrellin-Based Photodynamic therapy: An efficient antimicrobial
strategy for overcoming multidrug resistance. Physics, 7(3), 28.
https://doi.org/10.3390/physics7030028
8. Ebenezer, P., Kumara, S. P. S. N. B. S., Senevirathne, S. W. M. a. I., Bray, L. J.,
Wangchuk, P., Mathew, A., & Yarlagadda, P. K. D. V. (2025). Advancements in
antimicrobial surface coatings using Metal/Metaloxide nanoparticles, antibiotics,
and phytochemicals. Nanomaterials, 15(13), 1023.
https://doi.org/10.3390/nano15131023
9. Flores-Pérez, A., González-Olvera, M., & Breña-Medina, V. (2025). Transitions
to intermittent chaos in quorum sensing dynamics. Chaos Solitons & Fractals,
199, 116728. https://doi.org/10.1016/j.chaos.2025.116728
10. Gecow, A. (2025). Two coherent definitions of the life process derived from the
half-chaos theory and the (unintentional) purposeful information theory.
Biosystems, 105533. https://doi.org/10.1016/j.biosystems.2025.105533
11. Gusev, E., Sarapultsev, A., & Komelkova, M. (2025). Evolutionary trajectories of
consciousness: from biological foundations to technological horizons. Brain
Sciences, 15(7), 734. https://doi.org/10.3390/brainsci15070734
12. Ju, X., Chen, C., Oral, C. M., Sevim, S., Golestanian, R., Sun, M., Bouzari, N.,
Lin, X., Urso, M., Nam, J. S., Cho, Y., Peng, X., Landers, F. C., Yang, S., Adibi,
A., Taz, N., Wittkowski, R., Ahmed, D., Wang, W., . . . Pumera, M. (2025).
Technology Roadmap of Micro/Nanorobots. ACS Nano, 19(27), 24174–24334.
https://doi.org/10.1021/acsnano.5c03911
13. Jung, H., Park, S., Joe, S., Woo, S., Choi, W., & Bae, W. (2025). AI-Driven
Control Strategies for Biomimetic Robotics: Trends, challenges, and future
directions. Biomimetics, 10(7), 460. https://doi.org/10.3390/biomimetics10070460
14. Kovalev, M. A., Mamaeva, N. Y., Kristovskiy, N. V., Feskin, P. G., Vinnikov, R.
S., Oleinikov, P. D., Sosnovtseva, A. O., Yakovlev, V. A., Glukhov, G. S., &
Shaytan, A. K. (2025). Epigenome Engineering using DCAS Systems for
biomedical applications and biotechnology: current achievements, opportunities
and challenges. International Journal of Molecular Sciences, 26(13), 6371.
https://doi.org/10.3390/ijms26136371
15. Krishnan, N., Knight, J., Tropini, C., Pestana, L. R., & Fusco, D. (2025). The
what, when, where, and why of wrinkly morphology in biofilms. Biophysics
Reviews, 6(3). https://doi.org/10.1063/5.0223707
16. Li, T., Zheng, S., Xiao, Z., Fu, Q., Meng, F., Li, M., Liu, D., & Liu, Q. (2025).
Harnessing Bacillus subtilis–Moss synergy: Carbon–Structure optimization for
Erosion-Resistant barrier formation in cold mollisols. Agriculture, 15(14), 1465.
https://doi.org/10.3390/agriculture15141465
17. Liu, Y., Hou, J., Qi, Z., Yang, L., Du, Z., Wu, Y., Song, Q., Li, X., Sun, J., Chen,
P., Guan, X., & Li, L. (2025). Prenatal psychological stress mediates vertical
transmission of gut microbiome to the next generation affecting offspring
depressive-like behaviors and neurotransmitter. BMC Psychology, 13(1).
https://doi.org/10.1186/s40359-025-03088-y
18. Mariam, I., Rova, U., Christakopoulos, P., Matsakas, L., & Patel, A. (2025). Datadriven synthetic microbes for sustainable future. Npj Systems Biology and
Applications, 11(1). https://doi.org/10.1038/s41540-025-00556-4
19. Mejía-Caballero, A., & Marco, M. L. (2025). Lactobacilli biology, applications
and host interactions. Nature. https://doi.org/10.1038/s41579-025-01205-7
20. Monjezi, N., Eisvand, H. R., Lee, R., Levi, M., & Smith, D. L. (2025). Navigating
complex agricultural challenges: harnessing microbial solutions for sustainable
growth and resilience. Frontiers in Agronomy, 7.
https://doi.org/10.3389/fagro.2025.1631654
21. Mwangi, K. H., Qu, Y., Hu, P., Nagayasu, T., Liu, J., & Wang, X. (2025).
Microanatomy related biocidal activity at cellular resolution and bone
reconstruction potential of PEG EGaIn nanocapsules. PubMed, 11(1), 123.
https://doi.org/10.1038/s41522-025-00724-8
22. Nazir, M. M., Ghaffar, W., Mustafa, G., Saeed, S., Ijaz, M. U., & Ashraf, A.
(2025). Modulating depression through the gut–brain axis: the role of gut
microbiota in therapeutic interventions. Naunyn-Schmiedeberg S Archives of
Pharmacology. https://doi.org/10.1007/s00210-025-04464-6
23. Nichols, H. L., & Coon, K. L. (2025). Leveraging microbial ecology for
mosquito-borne disease control. PubMed. https://doi.org/10.1016/j.pt.2025.06.010
24. Periyasamy, A. P. (2025). A review of bioremediation of textile dye containing
wastewater. Cleaner Water, 4, 100092.
https://doi.org/10.1016/j.clwat.2025.100092
25. Rehman, S. S. U., Nasar, M. I., Mesquita, C. S., Khodor, S. A., Notebaart, R. A.,
Ott, S., Mundra, S., Arasardanam, R. P., Muhammad, K., & Alam, M. T. (2025).
Integrative systems biology approaches for analyzing microbiome dysbiosis and
species interactions. Briefings in Bioinformatics, 26(4).
https://doi.org/10.1093/bib/bbaf323
26. Rušanac, A., Škibola, Z., Matijašić, M., Paljetak, H. Č., & Perić, M. (2025).
Microbiome-Based products: Therapeutic potential for inflammatory skin
diseases. International Journal of Molecular Sciences, 26(14), 6745.
https://doi.org/10.3390/ijms26146745
27. Savulescu-Fiedler, I., Benea, S., Căruntu, C., Nancoff, A., Homentcovschi, C., &
Bucurica, S. (2025). Rewiring the Brain Through the Gut: Insights into
Microbiota–Nervous System Interactions. Current Issues in Molecular Biology,
47(7), 489. https://doi.org/10.3390/cimb47070489
28. Sherwani, M. K., Ruuskanen, M., Feldner-Busztin, D., Firbas, P. N., Boza, G.,
Moreh, A., Borman, T., Erawijantari, P. P., Scheuring, I., Gopalakrishnan, S., &
Lahti, L. (2025). Multi-omics time-series analysis in microbiome research: a
systematic review. bioRxiv (Cold Spring Harbor Laboratory).
https://doi.org/10.1101/2025.07.03.659054
29. Singh, R., Singh, P., Habiba, U., Pandey, V. K., Kaur, S., & Rustagi, S. (2025).
Potential Health Benefits of Postbiotics and its Utilization as Natural Food
Preservatives. Food and Humanity, 100726.
https://doi.org/10.1016/j.foohum.2025.100726
30. Srivastava, A. K., Mousavi, S. M., Bora, P., Hota, D., Pandey, V., Malhotra, S. K.,
& Ziogas, V. (2025). Rhizosphere to rhizosphere hybridization in fruit crops: new
perspectives. Frontiers in Horticulture, 4.
https://doi.org/10.3389/fhort.2025.1584807
31. Sulaiman, N. N. Y., Nizam, N. B. M., Noor, N. a. M., Lim, S. M., Ramasamy, K.,
Alabsi, A. M., & Ismail, M. F. (2025). An updated systematic review and
appraisal of the pathophysiologic mechanisms of probiotics in alleviating
depression. Nutritional Neuroscience, 1–21.
https://doi.org/10.1080/1028415x.2025.2531357
32. Tahri, A., Niccolai, E., & Amedei, A. (2025). Neurosteroids, microbiota, and
neuroinflammation: Mechanistic insights and therapeutic Perspectives.
International Journal of Molecular Sciences, 26(14), 7023.
https://doi.org/10.3390/ijms26147023
33. Wanasinghe, W. M. L. A., Yuan, S., Lokugalappatti, L. G. S., Fouzi, M. N. M., &
Qiu, D. (2025). Comparative analysis of the microbiota in wild mud crab (Scylla
serrata) intestine, sediment, and water in Koggala Lagoon, Sri Lanka. Aquatic
Sciences, 87(4). https://doi.org/10.1007/s00027-025-01193-z
34. Wang, M., Vladimirsky, A., & Giometto, A. (2025). Overcoming toxicity: How
nonantagonistic microbes manage to thrive in boom-and-bust environments.
Proceedings of the National Academy of Sciences, 122(26).
https://doi.org/10.1073/pnas.2424372122
35. Wang, X., Bi, L., Li, J., Liu, D., Li, W., & Wang, Z. (2025). Dynamic balance of
the lung microbiome in health and respiratory diseases. Chinese Medical Journal.
https://doi.org/10.1097/cm9.0000000000003712
36. Yan, C., Li, X., Peng, Z., Wu, W., Wang, Z., Zhu, Z., Liu, J., Wang, Y., Ren, J.,
Zhang, Z., & Li, J. (2025). Hologenomics reveals specialized dietary adaptations
in the Mengla Snail-Eating snake. PubMed, e09999.
https://doi.org/10.1002/advs.202509999
37. Zhang, H., Lee, B. J. Y., Wang, T., Xiang, X., Tan, Y., Han, Y., Bi, Y., Zhi, F.,
Wang, X., He, F., Salminen, S. J., Zhu, B., & Yang, R. (2025). Microbiota,
chronic inflammation, and health: The promise of inflammatome and
inflammatomics for precision medicine and healthcare. hLife.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Bioinformatics & Computational Biology Insights

This work is licensed under a Creative Commons Attribution 4.0 International License.