S M Nazmuz Sakib's Holistic Microbial Intelligence and Symbiotic Cognition Theory (HMISCT): Integrating Non-Equilibrium Microbial Dynamics and AIDriven Insights

Authors

  • Ustun Sahin Department of Agricultural Structures and Irrigation, Faculty of Agriculture, Ataturk University, Erzurum, Turkey Author

Abstract

The Holistic Microbial Intelligence and Symbiotic Cognition Theory (HMISCT) posits that microorganisms exhibit adaptive behaviors that reflect a form of intelligence, particularly through mechanisms such as quorum sensing, biofilm formation, and collective decision-making. This theory emphasizes the co-evolution of the host organism and its microbiome as a unified, symbiotic entity known as the holobiont. Recent advancements in microbiology suggest that microbial communities operate in non-equilibrium states, influenced by both biotic and abiotic factors, contributing to the overall intelligence of the holobiont. Furthermore, artificial intelligence (AI) techniques, such as machine learning and deep learning, offer new avenues for exploring microbial interactions and predicting community behaviors. By combining these insights, this integrated theory proposes a dynamic, adaptive system where microbial intelligence, shaped by ecological and host interactions, plays a crucial role in evolutionary processes and host survival. 

References

1. Alum, E. U., Gulumbe, B. H., Izah, S. C., Uti, D. E., Aja, P. M., Igwenyi, I. O., &

Offor, C. E. (2025). Natural product-based inhibitors of quorum sensing: A novel

approach to combat antibiotic resistance. Biochemistry and Biophysics Reports,

43, 102111. https://doi.org/10.1016/j.bbrep.2025.102111

2. Bouwmeester, H., Dong, L., Wippel, K., Hofland, T., & Smilde, A. (2025). The

chemical interaction between plants and the rhizosphere microbiome. Trends in

Plant Science. https://doi.org/10.1016/j.tplants.2025.06.001

3. Brandt, T. J. (2025). Forms of life: a literary formalist view on biological

individuality. History & Philosophy of the Life Sciences, 47(2).

https://doi.org/10.1007/s40656-025-00671-9

4. Chen, S., & Wu, T. (2025). Progression and prospects of machine learning

techniques in nanotoxicology: riding the AI-driven wave. Toxicology Mechanisms

and Methods, 1–32. https://doi.org/10.1080/15376516.2025.2536659

5. Das, D., Ingti, B., Paul, P., Jamatia, J. P., Ete, T., Khan, T., & Kalita, J. (2025).

Soil microbial dynamics in response to the impact of nanoparticles on agricultural

implications. Discover Soil., 2(1). https://doi.org/10.1007/s44378-025-00087-8

6. De Silva, S., Gamage, L. K. H., & Thapa, V. R. (2025). Impact of drought on soil

microbial communities. Microorganisms, 13(7), 1625.

https://doi.org/10.3390/microorganisms13071625

7. Durgadevi, P., Girigoswami, K., & Girigoswami, A. (2025). Photophysical

Process of Hypocrellin-Based Photodynamic therapy: An efficient antimicrobial

strategy for overcoming multidrug resistance. Physics, 7(3), 28.

https://doi.org/10.3390/physics7030028

8. Ebenezer, P., Kumara, S. P. S. N. B. S., Senevirathne, S. W. M. a. I., Bray, L. J.,

Wangchuk, P., Mathew, A., & Yarlagadda, P. K. D. V. (2025). Advancements in

antimicrobial surface coatings using Metal/Metaloxide nanoparticles, antibiotics,

and phytochemicals. Nanomaterials, 15(13), 1023.

https://doi.org/10.3390/nano15131023

9. Flores-Pérez, A., González-Olvera, M., & Breña-Medina, V. (2025). Transitions

to intermittent chaos in quorum sensing dynamics. Chaos Solitons & Fractals,

199, 116728. https://doi.org/10.1016/j.chaos.2025.116728

10. Gecow, A. (2025). Two coherent definitions of the life process derived from the

half-chaos theory and the (unintentional) purposeful information theory.

Biosystems, 105533. https://doi.org/10.1016/j.biosystems.2025.105533

11. Gusev, E., Sarapultsev, A., & Komelkova, M. (2025). Evolutionary trajectories of

consciousness: from biological foundations to technological horizons. Brain

Sciences, 15(7), 734. https://doi.org/10.3390/brainsci15070734

12. Ju, X., Chen, C., Oral, C. M., Sevim, S., Golestanian, R., Sun, M., Bouzari, N.,

Lin, X., Urso, M., Nam, J. S., Cho, Y., Peng, X., Landers, F. C., Yang, S., Adibi,

A., Taz, N., Wittkowski, R., Ahmed, D., Wang, W., . . . Pumera, M. (2025).

Technology Roadmap of Micro/Nanorobots. ACS Nano, 19(27), 24174–24334.

https://doi.org/10.1021/acsnano.5c03911

13. Jung, H., Park, S., Joe, S., Woo, S., Choi, W., & Bae, W. (2025). AI-Driven

Control Strategies for Biomimetic Robotics: Trends, challenges, and future

directions. Biomimetics, 10(7), 460. https://doi.org/10.3390/biomimetics10070460

14. Kovalev, M. A., Mamaeva, N. Y., Kristovskiy, N. V., Feskin, P. G., Vinnikov, R.

S., Oleinikov, P. D., Sosnovtseva, A. O., Yakovlev, V. A., Glukhov, G. S., &

Shaytan, A. K. (2025). Epigenome Engineering using DCAS Systems for

biomedical applications and biotechnology: current achievements, opportunities

and challenges. International Journal of Molecular Sciences, 26(13), 6371.

https://doi.org/10.3390/ijms26136371

15. Krishnan, N., Knight, J., Tropini, C., Pestana, L. R., & Fusco, D. (2025). The

what, when, where, and why of wrinkly morphology in biofilms. Biophysics

Reviews, 6(3). https://doi.org/10.1063/5.0223707

16. Li, T., Zheng, S., Xiao, Z., Fu, Q., Meng, F., Li, M., Liu, D., & Liu, Q. (2025).

Harnessing Bacillus subtilis–Moss synergy: Carbon–Structure optimization for

Erosion-Resistant barrier formation in cold mollisols. Agriculture, 15(14), 1465.

https://doi.org/10.3390/agriculture15141465

17. Liu, Y., Hou, J., Qi, Z., Yang, L., Du, Z., Wu, Y., Song, Q., Li, X., Sun, J., Chen,

P., Guan, X., & Li, L. (2025). Prenatal psychological stress mediates vertical

transmission of gut microbiome to the next generation affecting offspring

depressive-like behaviors and neurotransmitter. BMC Psychology, 13(1).

https://doi.org/10.1186/s40359-025-03088-y

18. Mariam, I., Rova, U., Christakopoulos, P., Matsakas, L., & Patel, A. (2025). Datadriven synthetic microbes for sustainable future. Npj Systems Biology and

Applications, 11(1). https://doi.org/10.1038/s41540-025-00556-4

19. Mejía-Caballero, A., & Marco, M. L. (2025). Lactobacilli biology, applications

and host interactions. Nature. https://doi.org/10.1038/s41579-025-01205-7

20. Monjezi, N., Eisvand, H. R., Lee, R., Levi, M., & Smith, D. L. (2025). Navigating

complex agricultural challenges: harnessing microbial solutions for sustainable

growth and resilience. Frontiers in Agronomy, 7.

https://doi.org/10.3389/fagro.2025.1631654

21. Mwangi, K. H., Qu, Y., Hu, P., Nagayasu, T., Liu, J., & Wang, X. (2025).

Microanatomy related biocidal activity at cellular resolution and bone

reconstruction potential of PEG EGaIn nanocapsules. PubMed, 11(1), 123.

https://doi.org/10.1038/s41522-025-00724-8

22. Nazir, M. M., Ghaffar, W., Mustafa, G., Saeed, S., Ijaz, M. U., & Ashraf, A.

(2025). Modulating depression through the gut–brain axis: the role of gut

microbiota in therapeutic interventions. Naunyn-Schmiedeberg S Archives of

Pharmacology. https://doi.org/10.1007/s00210-025-04464-6

23. Nichols, H. L., & Coon, K. L. (2025). Leveraging microbial ecology for

mosquito-borne disease control. PubMed. https://doi.org/10.1016/j.pt.2025.06.010

24. Periyasamy, A. P. (2025). A review of bioremediation of textile dye containing

wastewater. Cleaner Water, 4, 100092.

https://doi.org/10.1016/j.clwat.2025.100092

25. Rehman, S. S. U., Nasar, M. I., Mesquita, C. S., Khodor, S. A., Notebaart, R. A.,

Ott, S., Mundra, S., Arasardanam, R. P., Muhammad, K., & Alam, M. T. (2025).

Integrative systems biology approaches for analyzing microbiome dysbiosis and

species interactions. Briefings in Bioinformatics, 26(4).

https://doi.org/10.1093/bib/bbaf323

26. Rušanac, A., Škibola, Z., Matijašić, M., Paljetak, H. Č., & Perić, M. (2025).

Microbiome-Based products: Therapeutic potential for inflammatory skin

diseases. International Journal of Molecular Sciences, 26(14), 6745.

https://doi.org/10.3390/ijms26146745

27. Savulescu-Fiedler, I., Benea, S., Căruntu, C., Nancoff, A., Homentcovschi, C., &

Bucurica, S. (2025). Rewiring the Brain Through the Gut: Insights into

Microbiota–Nervous System Interactions. Current Issues in Molecular Biology,

47(7), 489. https://doi.org/10.3390/cimb47070489

28. Sherwani, M. K., Ruuskanen, M., Feldner-Busztin, D., Firbas, P. N., Boza, G.,

Moreh, A., Borman, T., Erawijantari, P. P., Scheuring, I., Gopalakrishnan, S., &

Lahti, L. (2025). Multi-omics time-series analysis in microbiome research: a

systematic review. bioRxiv (Cold Spring Harbor Laboratory).

https://doi.org/10.1101/2025.07.03.659054

29. Singh, R., Singh, P., Habiba, U., Pandey, V. K., Kaur, S., & Rustagi, S. (2025).

Potential Health Benefits of Postbiotics and its Utilization as Natural Food

Preservatives. Food and Humanity, 100726.

https://doi.org/10.1016/j.foohum.2025.100726

30. Srivastava, A. K., Mousavi, S. M., Bora, P., Hota, D., Pandey, V., Malhotra, S. K.,

& Ziogas, V. (2025). Rhizosphere to rhizosphere hybridization in fruit crops: new

perspectives. Frontiers in Horticulture, 4.

https://doi.org/10.3389/fhort.2025.1584807

31. Sulaiman, N. N. Y., Nizam, N. B. M., Noor, N. a. M., Lim, S. M., Ramasamy, K.,

Alabsi, A. M., & Ismail, M. F. (2025). An updated systematic review and

appraisal of the pathophysiologic mechanisms of probiotics in alleviating

depression. Nutritional Neuroscience, 1–21.

https://doi.org/10.1080/1028415x.2025.2531357

32. Tahri, A., Niccolai, E., & Amedei, A. (2025). Neurosteroids, microbiota, and

neuroinflammation: Mechanistic insights and therapeutic Perspectives.

International Journal of Molecular Sciences, 26(14), 7023.

https://doi.org/10.3390/ijms26147023

33. Wanasinghe, W. M. L. A., Yuan, S., Lokugalappatti, L. G. S., Fouzi, M. N. M., &

Qiu, D. (2025). Comparative analysis of the microbiota in wild mud crab (Scylla

serrata) intestine, sediment, and water in Koggala Lagoon, Sri Lanka. Aquatic

Sciences, 87(4). https://doi.org/10.1007/s00027-025-01193-z

34. Wang, M., Vladimirsky, A., & Giometto, A. (2025). Overcoming toxicity: How

nonantagonistic microbes manage to thrive in boom-and-bust environments.

Proceedings of the National Academy of Sciences, 122(26).

https://doi.org/10.1073/pnas.2424372122

35. Wang, X., Bi, L., Li, J., Liu, D., Li, W., & Wang, Z. (2025). Dynamic balance of

the lung microbiome in health and respiratory diseases. Chinese Medical Journal.

https://doi.org/10.1097/cm9.0000000000003712

36. Yan, C., Li, X., Peng, Z., Wu, W., Wang, Z., Zhu, Z., Liu, J., Wang, Y., Ren, J.,

Zhang, Z., & Li, J. (2025). Hologenomics reveals specialized dietary adaptations

in the Mengla Snail-Eating snake. PubMed, e09999.

https://doi.org/10.1002/advs.202509999

37. Zhang, H., Lee, B. J. Y., Wang, T., Xiang, X., Tan, Y., Han, Y., Bi, Y., Zhi, F.,

Wang, X., He, F., Salminen, S. J., Zhu, B., & Yang, R. (2025). Microbiota,

chronic inflammation, and health: The promise of inflammatome and

inflammatomics for precision medicine and healthcare. hLife.

https://doi.org/10.1016/j.hlife.2025.04.004

Downloads

Published

2025-08-30