MICROBIAL SIGNALING NETWORKS: BRIDGING CELLULAR COMMUNICATION WITH APPLICATIONS IN HEALTH, AGRICULTURE, AND BIOTECHNOLOGY

Authors

  • Abdullah Al Mamun Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia-7003, Bangladesh Author
  • M. Mizanur Rahman Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia-7003, Bangladesh Author

Keywords:

Quorum sensing, autoinducers, microbial signaling, cellular microenvironment, hostmicrobe interaction, biotechnology, regenerative medicine, sustainable agriculture

Abstract

Microorganisms utilize intricate chemical signaling mechanisms to communicate both within and across species, influencing a wide range of physiological behaviors and ecological interactions. Among these mechanisms, quorum sensing stands out as a pivotal strategy that bacteria employ to detect population density and coordinate gene expression in a collective manner. These signaling systems are mediated by autoinducers and other secondary metabolites, such as peptides, fatty acids, terpenoids, and alkaloids. These molecules not only facilitate intra- and inter-species communication but also enable inter-kingdom interactions with host organisms, modulating host immune responses, gut health, and even cell fate decisions. Importantly, the understanding and manipulation of these microbial signals have opened new frontiers in biotechnology, particularly in the areas of regenerative medicine, sustainable agriculture, and antimicrobial therapy. This review provides a comprehensive overview of microbial signaling molecules, the evolution of cellcell communication, the role of the cellular microenvironment, and emerging strategies for engineering functional cellular responses. By elucidating the pathways and applications of microbial signaling, we propose innovative approaches to convert non-functional or damaged cells into functional units, benefiting both human health and environmental sustainability. 

References

[1] Yajima, A. (2016). Recent advances in the chemistry and chemical biology of quorum-sensing

pheromones and microbial hormones. Studies in Natural Products Chemistry, 47, 331–355.

https://doi.org/10.1016/B978-0-444-63603-4.00010-3

[2] Abebe, G. M. (2021). Oral biofilm and its impact on oral health, psychological and social

interaction. Int. J. Oral Dent. Health, 7, 127–137. https://doi.org/10.23937/2469-

5734/1510127

[3] Hughes, D. T., & Sperandio, V. (2008). Inter-kingdom signalling: communication between

bacteria and their hosts. Nature Reviews Microbiology, 6(2), 111–120.

https://doi.org/10.1038/nrmicro1836

[4] Balan, B., Dhaulaniya, A. S., Varma, D. A., Sodhi, K. K., Kumar, M., Tiwari, M., & Singh, D.

K. (2021). Microbial biofilm ecology, in silico study of quorum sensing receptor-ligand

interactions and biofilm mediated bioremediation. Archives of Microbiology, 203, 13–30.

https://doi.org/10.1007/s00203-020-02012-9

[5] Camilli, A., & Bassler, B. L. (2006). Bacterial small-molecule signaling pathways. Science

(New York, N.Y.), 311(5764), 1113–1116. https://doi.org/10.1126/science.1121357

https://doi.org/10.1126/science.112135

[6] Huang, S., Liu, X., Yang, W., Ma, L., Li, H., Liu, R., Qiu, J., & Li, Y. (2022). Insights into

Adaptive Mechanisms of Extreme Acidophiles Based on Quorum Sensing/QuenchingRelated Proteins. Msystems, 7(2), e01491-21. https://doi.org/10.1128/msystems.01491-21

[7] Groult, B., Bredin, P., & Lazar, C. S. (2022). Ecological processes differ in community

assembly of Archaea, Bacteria and Eukaryotes in a biogeographical survey of groundwater

habitats in the Quebec region (Canada). Environmental Microbiology, 24(12), 5898–5910.

https://doi.org/10.1111/1462-2920.16219

[8] Wang, Y., Huang, W., Han, Y., Huang, X., Wang, C., Ma, K., Kong, M., Jiang, N., & Pan, J.

(2022). Microbial diversity of archaeological ruins of Liangzhu City and its correlation with

environmental factors. International Biodeterioration & Biodegradation, 175, 105501.

https://doi.org/10.1016/j.ibiod.2022.105501

[9] Chamkhi, I., El Omari, N., Benali, T., & Bouyahya, A. (2020). Quorum sensing and plantbacteria interaction: role of quorum sensing in the rhizobacterial community colonization in

the rhizosphere. In Quorum Sensing: Microbial Rules of Life (pp. 139–153). ACS

Publications. https://doi.org/10.1021/bk-2020-1374.ch008

[10] Combarnous, Y., & Nguyen, T. M. D. (2020). Cell communications among microorganisms,

plants, and animals: origin, evolution, and interplays. International Journal of Molecular

Sciences, 21(21), 8052. https://doi.org/10.3390/ijms21218052

[11] Rosset, S. L., Oakley, C. A., Ferrier-Pagès, C., Suggett, D. J., Weis, V. M., & Davy, S. K.

(2021). The molecular language of the cnidarian–dinoflagellate symbiosis. Trends in

Microbiology, 29(4), 320–333. https://doi.org/10.1016/j.tim.2020.08.005

[12] Patrad, E., Khalighfard, S., Amiriani, T., Khori, V., & Alizadeh, A. M. (2022). Molecular

mechanisms underlying the action of carcinogens in gastric cancer with a glimpse into

targeted therapy. Cellular Oncology, 1–45. https://doi.org/10.1007/s13402-022-00715-3

[13] Tyson, J., Bundy, K., Roach, C., Douglas, H., Ventura, V., Segars, M. F., Schwartz, O., &

Simpson, C. L. (2020). Mechanisms of the osteogenic switch of smooth muscle cells in

vascular calcification: WNT signaling, BMPs, mechanotransduction, and EndMT.

Bioengineering, 7(3), 88. https://doi.org/10.3390/bioengineering7030088

[14] AlMusawi, S., Ahmed, M., & Nateri, A. S. (2021). Understanding cell‐cell communication

and signaling in the colorectal cancer microenvironment. Clinical and Translational

Medicine, 11(2), e308. https://doi.org/10.1002/ctm2.308

[15] Shin, Y., Chane, A., Jung, M., & Lee, Y. (2021). Recent advances in understanding the roles

of pectin as an active participant in plant signaling networks. Plants, 10(8), 1712.

https://doi.org/10.3390/plants10081712

[16] Wolf, S. (2022). Cell wall signaling in plant development and defense. Annual Review of

Plant Biology, 73, 323–353. https://doi.org/10.1146/annurev-arplant-102820-095312

[17] Davares, A. K. L., Arsene, M. M. J., Viktorovna, P. I., Vyacheslavovna, Y. N., Vladimirovna,

Z. A., Aleksandrovna, V. E., Nikolayevich, S. A., Nadezhda, S., Anatolievna, G. O., &

Nikolaevna, S. I. (2022). Quorum-Sensing Inhibitors from Probiotics as a Strategy to Combat

Bacterial Cell-to-Cell Communication Involved in Food Spoilage and Food Safety.

Fermentation, 8(12), 711. https://doi.org/10.3390/fermentation8120711

[18] Duddy, O. P., & Bassler, B. L. (2021). Quorum sensing across bacterial and viral domains.

PLoS Pathogens, 17(1), e1009074. https://doi.org/10.1371/journal.ppat.1009074

[19] Jin, T., Patel, S. J., & Van Lehn, R. C. (2021). Molecular simulations of lipid membrane

partitioning and translocation by bacterial quorum sensing modulators. Plos One, 16(2),

e0246187. https://doi.org/10.1371/journal.pone.0246187

[20] Brindhadevi, K., LewisOscar, F., Mylonakis, E., Shanmugam, S., Verma, T. N., &

Pugazhendhi, A. (2020). Biofilm and Quorum sensing mediated pathogenicity in

Pseudomonas aeruginosa. Process Biochemistry, 96, 49–57.

https://doi.org/10.1016/j.procbio.2020.06.001

[21] Zhou, L., Zhang, Y., Ge, Y., Zhu, X., & Pan, J. (2020). Regulatory mechanisms and promising

applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation.

Frontiers in Microbiology, 11, 589640. https://doi.org/10.3389/fmicb.2020.589640

[22] Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W., & Greenberg,

E. P. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm.

Science (New York, N.Y.), 280(5361), 295–298.

https://doi.org/10.1126/science.280.5361.295 https://doi.org/10.1126/science.280.5361.295

[23] Wiesmann, C. L., Wang, N. R., Zhang, Y., Liu, Z., & Haney, C. H. (2022). Origins of

symbiosis: shared mechanisms underlying microbial pathogenesis, commensalism and

mutualism of plants and animals. FEMS Microbiology Reviews.

https://doi.org/10.1093/femsre/fuac048

[24] Nealson, K. H., Platt, T., & Hastings, J. W. (1970). Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 104(1), 313–322.

https://doi.org/10.1128/jb.104.1.313-322.1970

[25] Pan, J., Zhou, J., Tang, X., Guo, Y., Zhao, Y., & Liu, S. (2023). Bacterial Communication

Coordinated Behaviors of Whole Communities to Cope with Environmental Changes.

Environmental Science & Technology. https://doi.org/10.1021/acs.est.2c05780

[26] Wang, S., Payne, G. F., & Bentley, W. E. (2020). Quorum sensing communication:

molecularly connecting cells, their neighbors, and even devices. Annual Review of Chemical

and Biomolecular Engineering, 11, 447–468. https://doi.org/10.1146/annurev-chembioeng-

101519-124728

[27] Wu, L., & Luo, Y. (2021). Bacterial quorum-sensing systems and their role in intestinal

bacteria-host crosstalk. Frontiers in Microbiology, 12, 611413.

https://doi.org/10.3389/fmicb.2021.611413

[28] Tang, M., Liao, S., Qu, J., Liu, Y., Han, S., Cai, Z., Fan, Y., Yang, L., Li, S., & Li, L. (2022).

Evaluating Bacterial Pathogenesis Using a Model of Human Airway Organoids Infected with

Pseudomonas aeruginosa Biofilms. Microbiology Spectrum, 10(6), e02408-22.

https://doi.org/10.1128/spectrum.02408-22

[29] Hwang, O.-J., & Back, K. (2022). Functional Characterization of Arylalkylamine NAcetyltransferase, a Pivotal Gene in Antioxidant Melatonin Biosynthesis from

Chlamydomonas reinhardtii. Antioxidants, 11(8), 1531.

https://doi.org/10.3390/antiox11081531

[30] Tang, Y., Chen, H., Lin, Z., Zhang, L., Upadhyay, A., Liao, C., Merkler, D. J., & Han, Q.

(2022). Evolutionary genomics analysis reveals gene expansion and functional diversity of

arylalkylamine N‐acetyltransferases in the Culicinae subfamily of mosquitoes. Insect

Science. https://doi.org/10.1111/1744-7917.13100

[31] Cui, F., Zhou, Z., & Zhou, H. S. (2020). Molecularly imprinted polymers and surface

imprinted polymers based electrochemical biosensor for infectious diseases. Sensors, 20(4),

996. https://doi.org/10.3390/s20040996

[32] Huang, J., Zhang, L., Wan, D., Zhou, L., Zheng, S., Lin, S., & Qiao, Y. (2021). Extracellular

matrix and its therapeutic potential for cancer treatment. Signal Transduction and Targeted

Therapy, 6(1), 153. https://doi.org/10.1038/s41392-021-00544-0

[33] Xiao, L., Sun, Y., Liao, L., & Su, X. (2023). Response of mesenchymal stem cells to surface

topography of scaffolds and the underlying mechanisms. Journal of Materials Chemistry B.

https://doi.org/10.1039/D2TB01875F

[34] Shao, Y., & Fu, J. (2014). Integrated micro/nanoengineered functional biomaterials for cell

mechanics and mechanobiology: a materials perspective. Advanced Materials, 26(10), 1494-

1533. https://doi.org/10.1002/adma.201304431

[35] Tanaka, M., Nakahata, M., Linke, P., & Kaufmann, S. (2020). Stimuli-responsive hydrogels

as a model of the dynamic cellular microenvironment. Polymer Journal, 52(8), 861–870.

https://doi.org/10.1038/s41428-020-0353-6

[36] Gross, S. M., Dane, M. A., Smith, R. L., Devlin, K. L., McLean, I. C., Derrick, D. S., Mills,

C. E., Subramanian, K., London, A. B., & Torre, D. (2022). A multi-omic analysis of

MCF10A cells provides a resource for integrative assessment of ligand-mediated molecular

and phenotypic responses. Communications Biology, 5(1), 1066.

https://doi.org/10.1038/s42003-022-03975-9

[37] Al Mamun, A., & Rahman, S. T. (2025). Microbial Signaling Networks: Bridging Cellular

Communication with Applications in Health, Agriculture, and Biotechnology. https://doi.org/

10.20944/preprints202504.1833.v1

[38] Lu, P., Takai, K., Weaver, V. M., & Werb, Z. (2011). Extracellular matrix degradation and

remodeling in development and disease. Cold Spring Harbor Perspectives in Biology, 3(12),

a005058. https://doi.org/10.1101/cshperspect.a005058

[39] Thomas, G. J., Hart, I. R., Speight, P. M., & Marshall, J. F. (2002). Binding of TGF-beta1

latency-associated peptide (LAP) to alpha(v)beta6 integrin modulates behaviour of

squamous carcinoma cells. British Journal of Cancer, 87(8), 859–867.

https://doi.org/10.1038/sj.bjc.6600545

[40] Lemmon, C. A., Chen, C. S., & Romer, L. H. (2009). Cell traction forces direct fibronectin

matrix assembly. Biophysical Journal, 96(2), 729–738.

https://doi.org/10.1016/j.bpj.2008.10.009

[41] Legant, W. R., Chen, C. S., & Vogel, V. (2012). Force-induced fibronectin assembly and

matrix remodeling in a 3D microtissue model of tissue morphogenesis. Integrative Biology :

Quantitative Biosciences from Nano to Macro, 4(10), 1164–1174.

https://doi.org/10.1039/c2ib20059g

[42] DeMali, K. A., Sun, X., & Bui, G. A. (2014). Force transmission at cell-cell and cell-matrix

adhesions. Biochemistry, 53(49), 7706–7717. https://doi.org/10.1021/bi501181p

[43] DuFort, C. C., Paszek, M. J., & Weaver, V. M. (2011). Balancing forces: architectural control

of mechanotransduction. Nature Reviews. Molecular Cell Biology, 12(5), 308–319.

https://doi.org/10.1038/nrm3112

[44] Elvevoll, E. O., James, D., Toppe, J., Gamarro, E. G., & Jensen, I.-J. (2022). Food Safety

Risks Posed by Heavy Metals and Persistent Organic Pollutants (POPs) related to

Consumption of Sea Cucumbers. Foods, 11(24), 3992.

https://doi.org/10.3390/foods11243992

[45] Xing, H., Lee, H., Luo, L., & Kyriakides, T. R. (2020). Extracellular matrix-derived

biomaterials in engineering cell function. Biotechnology Advances, 42, 107421.

https://doi.org/10.1016/j.biotechadv.2019.107421

[46] Dalton, C. J., & Lemmon, C. A. (2021). Fibronectin: Molecular structure, fibrillar structure

and mechanochemical signaling. Cells, 10(9), 2443. https://doi.org/10.3390/cells10092443

[47] Miller, A. E., Hu, P., & Barker, T. H. (2020). Feeling things out: bidirectional signaling of

the cell–ECM interface, implications in the mechanobiology of cell spreading, migration,

proliferation, and differentiation. Advanced Healthcare Materials, 9(8), 1901445.

https://doi.org/10.1002/adhm.201901445

[48] Virdi, J. K., & Pethe, P. (2021). Biomaterials regulate mechanosensors YAP/TAZ in stem cell

growth and differentiation. Tissue Engineering and Regenerative Medicine, 18(2), 199–215.

https://doi.org/10.1007/s13770-020-00301-4

[49] Lucke, M., Correa, M. G., & Levy, A. (2020). The role of secretion systems, effectors, and

secondary metabolites of beneficial rhizobacteria in interactions with plants and

microbes. Frontiers in Plant Science, 11, 589416. https://doi.org/10.3389/fpls.2020.589416

[50] Jamil, F., Mukhtar, H., Fouillaud, M., & Dufossé, L. (2022). Rhizosphere signaling: Insights

into plant–rhizomicrobiome interactions for sustainable agronomy. Microorganisms, 10(5),

899. https://doi.org/10.3390/microorganisms10050899

[51] Singh, S. K., Wu, X., Shao, C., & Zhang, H. (2022). Microbial enhancement of plant nutrient

acquisition. Stress Biology, 2(1), 3. https://doi.org/10.1007/s44154-021-00027-w

[52] Timofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2023). Plant growth-promoting soil

bacteria: Nitrogen fixation, phosphate solubilization, siderophore production, and other

biological activities. Plants, 12(24), 4074. https://doi.org/10.3390/plants12244074

[53] Chaudhary, P., Agri, U., Chaudhary, A., Kumar, A., & Kumar, G. (2022). Endophytes and

their potential in biotic stress management and crop production. Frontiers in

microbiology, 13, 933017. https://doi.org/10.3389/fmicb.2022.933017

[54] Patra, D., & Mandal, S. (2022). Non-rhizobia are the alternative sustainable solution for

growth and development of the nonlegume plants. Biotechnology and Genetic Engineering

Reviews, 1–30. https://doi.org/10.1080/02648725.2022.2152623

Downloads

Published

2025-08-30