

MICROBIAL SIGNALING NETWORKS: BRIDGING CELLULAR COMMUNICATION WITH APPLICATIONS IN HEALTH, AGRICULTURE, AND BIOTECHNOLOGY

Abdullah Al Mamun^{1*} and M. Mizanur Rahman¹

¹Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia-7003, Bangladesh

*Corresponding author: Abdullah Al Mamun, Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia-7003, Bangladesh. Email: aamamunbtge@gmail.com

Abstract

Microorganisms utilize intricate chemical signaling mechanisms to communicate both within and across species, influencing a wide range of physiological behaviors and ecological interactions. Among these mechanisms, quorum sensing stands out as a pivotal strategy that bacteria employ to detect population density and coordinate gene expression in a collective manner. These signaling systems are mediated by autoinducers and other secondary metabolites, such as peptides, fatty acids, terpenoids, and alkaloids. These molecules not only facilitate intra- and inter-species communication but also enable inter-kingdom interactions with host organisms, modulating host immune responses, gut health, and even cell fate decisions. Importantly, the understanding and manipulation of these microbial signals have opened new frontiers in biotechnology, particularly in the areas of regenerative medicine, sustainable agriculture, and antimicrobial therapy. This review provides a comprehensive overview of microbial signaling molecules, the evolution of cellcell communication, the role of the cellular microenvironment, and emerging strategies for engineering functional cellular responses. By elucidating the pathways and applications of microbial signaling, we propose innovative approaches to convert non-functional or damaged cells into functional units, benefiting both human health and environmental sustainability.

Keywords: Quorum sensing, autoinducers, microbial signaling, cellular microenvironment, hostmicrobe interaction, biotechnology, regenerative medicine, sustainable agriculture.

Introduction

Microorganisms possess sophisticated systems for cell-to-cell communication, primarily through the production and detection of small signaling molecules that orchestrate population-wide behaviors [1]. One of the most studied communication mechanisms is quorum sensing, which allows microbial communities to coordinate physiological processes based on population density. Importantly, quorum sensing is not limited to microbial communities alone; recent research demonstrates that microorganisms can communicate with their hosts through these signaling networks [2, 3]. These communication systems rely on diverse chemical signals, including autoinducers (AIs) and secondary metabolites, which facilitate intra-species, inter-species, and

CC BY 4.0 Deed Attribution 4.0 International

even inter-kingdom interactions [1]. Autoinducers such as acyl-homoserine lactones (AHLs) in Gram-negative bacteria or oligopeptides in Gram-positive bacteria have been shown to mediate critical behaviors such as motility, virulence, biofilm formation, and antibiotic production [4, 5,

Microbial communication with eukaryotic hosts is complex and can be either symbiotic or pathogenic [7, 8]. For instance, the human gut microbiota maintains a mutualistic relationship with its host, aiding in nutrient absorption and immune system development [3]. This beneficial interaction is largely mediated by chemical signals, hormones, peptides, and metabolites, that facilitate bidirectional communication between the host and microbial cells [9, 10]. These signaling mechanisms are central not only to microbial ecology but also to host development and health. By understanding how microbes use signaling molecules to influence cellular fate and behavior, researchers can harness these interactions to develop genetically engineered microorganisms capable of modulating host cells. This includes gene expression editing, protein production, suppression of harmful genes, and even inducing or inhibiting cellular differentiation [11]. Cell signaling is essential for regulating critical cellular functions such as growth, differentiation, migration, and apoptosis [12, 13]. Disruptions in signaling pathways are implicated in many diseases, including cancer and autoimmune disorders [14, 15, 16]. Thus, decoding microbial signaling provides not only fundamental insights into biology but also novel strategies for disease treatment and regenerative engineering.

This review highlights the mechanisms and significance of microbial signaling systems, especially quorum sensing, in shaping cellular environments and enabling host-microbe interactions. It also explores potential biotechnological applications such as bioengineering, microbial therapy, and agricultural enhancement, focusing on how signaling pathways can be manipulated to convert nonfunctional cells into functional ones.

Quorum Sensing and Autoinducers Overview of Quorum Sensing

Quorum sensing is a density-dependent regulatory system that enables bacteria to communicate and coordinate group behaviors through the production and detection of extracellular signaling molecules known as autoinducers [17]. As the population of bacteria increases, the concentration of these molecules rises, eventually triggering changes in gene expression once a threshold is surpassed [18]. This system allows bacteria to synchronize behaviors that are inefficient or ineffective at the individual level but highly advantageous when performed collectively. These include biofilm formation, bioluminescence, sporulation, virulence factor production, and antibiotic synthesis [19]. Quorum sensing operates through the synthesis, release, and detection of Autoinducers. Upon reaching a critical concentration, these molecules bind to specific receptors, initiating intracellular signaling cascades that alter gene transcription [20]. Bacteria often live in heterogeneous populations, where quorum sensing also enables them to detect and respond to signals produced by other species or genera, thereby facilitating interspecies and interkingdom interactions [21].

Diversity and Function of Autoinducers

Autoinducers are chemically diverse molecules whose production is tightly linked to cell population density. In Gram-negative bacteria, AHLs are the predominant signaling molecules,

while Gram-positive bacteria utilize oligopeptides [22]. A third type, autoinducer-2 (AI-2), is considered a universal signal employed in interspecies communication across both Gram-negative and Gram-positive bacteria. The biological effects of Autoinducers vary depending on species and environmental context (Table 1), but common functions include the regulation of virulence, motility, secondary metabolite production, and biofilm architecture [23]. The discovery that Vibrio fischeri produces light only when a certain population density is achieved led to the coining of the term "autoinduction" [24]. Quorum sensing not only governs microbial population dynamics but also influences host-microbe interactions. For example, some bacterial Autoinducers can modulate host immune responses or disrupt host cellular signaling, underlining the importance of quorum sensing in both symbiosis and pathogenesis [25, 26, 27].

Evolutionary Perspectives on Cell-Cell Signaling

Recent studies suggest that microbial signaling mechanisms may have influenced the evolution of complex communication systems in higher organisms. Tang et al. [28] proposed that many firstmessenger biosynthetic pathways, such as those for dopamine, serotonin, and melatonin, share conserved genetic origins across bacteria and mammals. Horizontal gene transfer appears to have played a significant role, allowing bacterial enzymes to evolve functions related to mammalian signaling molecules [29]. The 17 known enzymes involved in signal metabolism, 16 are present in both bacteria and vertebrates, indicating extensive genetic overlap [30]. For example, both groups possess the enzyme hydroxy-indole O-methyltransferase, essential for melatonin synthesis. These findings support the notion that certain bacteria are naturally capable of producing signaling molecules traditionally associated with mammalian systems, reinforcing the hypothesis that interkingdom communication evolved from these shared molecular tools [31, 3]. Together, these insights demonstrate that quorum sensing is not merely a microbial phenomenon but a deeply conserved communication strategy that underpins a broad array of biological interactions and evolutionary processes.

The Cellular Micro-environment and Host Modulation **Definition and Components of the Micro-environment**

The cellular microenvironment encompasses the local conditions and components surrounding a cell, including the extracellular matrix (ECM), adjacent cells, and soluble or insoluble signaling molecules. These microenvironmental cues regulate essential cellular processes such as differentiation, proliferation, adhesion, and migration [32]. The ECM, in particular, provides not only structural support but also mechanical and biochemical signals that influence cell behavior. Biochemical cues such as hormones, cytokines, and growth factors (GF) serve as primary regulators of cellular behavior. Likewise, biophysical stimuli, topographical features, stiffness, and molecular alignments of ECM proteins, are also critical in dictating cellular responses [33]. It is essential to recognize that cells sense their surroundings at the micron and nanometer scale through protein receptors, and hence, traditional bulk measurements may not capture the microenvironment experienced at the cellular level [34, 35].

Receptor-Mediated Signal Recognition

Cells utilize two major classes of surface receptors to recognize and respond to environmental signals: those that bind soluble ligands (e.g., hormones and cytokines) and those that interact with

insoluble ligands (e.g., ECM fragments or membrane-bound ligands from adjacent cells). These receptors include integrins and cadherins, which mediate cell adhesion and transduce biophysical signals [36]. An illustrative example is transforming growth factor-beta (TGF-β), a key regulator of ECM synthesis, inflammation, and cell proliferation. TGF-β is initially secreted in an inactive form bound to the ECM, and its activation is tightly regulated by ECM-associated proteins like fibrillin and fibronectin [32, 37]. Following mechanical or enzymatic cues, active TGF-β is released and triggers downstream signaling cascades that regulate cellular behavior [38, 39].

Cell-Micro-environment Interactions

Cells actively contribute to shaping their microenvironment through secretion of soluble factors, ECM remodeling, and force generation (Figure 1). Cytoskeletal components and motor proteins, driven by ATP hydrolysis, allow cells to dynamically reshape themselves and exert forces on their surrounding matrix [40]. These forces facilitate local ECM assembly, influence fibril orientation, and affect matrix stiffness, ultimately altering how cells receive and respond to external cues [41]. Mechanical signals can also be transmitted directly to neighboring cells through adherens junctions and other contact-dependent mechanisms [42]. This two-way exchange ensures coordination during essential processes such as tissue morphogenesis, wound healing, and immune responses

Soluble Signaling Molecules and Autocrine/Paracrine Loops

Cells release various soluble molecules, cytokines, chemokines, growth factors, and hormones, that diffuse through the extracellular space to influence nearby (paracrine signaling) or the same (autocrine signaling) cells [43]. These interactions regulate diverse cellular behaviors and are frequently utilized in bioengineering applications to optimize tissue culture systems or scaffold design [44].

Role of Extracellular Matrix (ECM)

The ECM is a fibrous, dynamic scaffold composed of proteins, glycoproteins, and proteoglycans. It dictates tissue architecture and transmits mechanical signals to embedded cells. In tissues like cartilage and tendon, the ECM determines bulk mechanical properties and supports load-bearing functions [45]. Moreover, it stores and regulates the release of signaling molecules that influence cell fate and function [46, 47, 48]. Despite extensive research, the full impact of ECM's biochemical, mechanical, and structural properties on cellular responses is still under active investigation. However, its importance in both physiological and pathological contexts, including cancer, fibrosis, and wound healing, is well established.

Microbial Signaling in Agriculture

Plant-Microbe Interactions and Rhizosphere Communication

In the agricultural context, microbial signaling plays a central role in facilitating beneficial plantmicrobe interactions, particularly in the rhizosphere, the region of soil influenced by plant roots. Rhizobacteria such as Bacillus spp., Pseudomonas spp., and Streptomyces spp. utilize quorum sensing molecules to regulate colonization, biofilm formation, and secretion of secondary metabolites that enhance plant growth and suppress pathogens [49]. These microbes communicate with plant roots via signaling compounds such as lipo-chitooligosaccharides (LCOs), N-acyl-

CC BY 4.0 Deed Attribution 4.0 International

homoserine lactones (AHLs), and volatile organic compounds (VOCs), which influence root architecture and immune responses [50].

Role of Endophytes and Plant Growth Promoting Rhizobacteria (PGPR)

Endophytic microorganisms, residing within plant tissues without causing harm, significantly contribute to plant fitness by producing plant growth regulators (PGRs) like auxins, gibberellins, and cytokinins (Table 2). These microbes communicate via signaling molecules that modulate gene expression in host plants, resulting in improved nutrient acquisition and stress tolerance [51]. Similarly, PGPRs secrete peptides, siderophores, and small RNAs that mediate interactions with the host and regulate functions such as nitrogen fixation and phosphate solubilization [52].

Quorum Sensing in Biocontrol and Biofertilizer Development

Quorum sensing molecules also regulate the synthesis of antimicrobial compounds, exopolysaccharides (EPS), and lytic enzymes that are crucial for biocontrol mechanisms. For example, the fungus Trichoderma harzianum utilizes quorum sensing-regulated pathways to produce enzymes that degrade the cell walls of phytopathogens [53]. Moreover, certain bacteria employ quorum quenching mechanisms to disrupt the communication of pathogenic microbes, thereby providing indirect protection to plants [52]. Genetic and metabolic engineering approaches are now being applied to enhance the signaling capacity of beneficial microbes used in biofertilizers and biopesticides. Engineered strains are being developed to secrete higher levels of specific signaling molecules that promote plant health and yield under diverse environmental conditions [53]

Inter-Kingdom Signaling Between Plants and Microbes

Plants are also capable of perceiving microbial signals and responding through the release of signaling molecules such as flavonoids, salicylic acid, and jasmonic acid (Table S1). These molecules help recruit beneficial microbes while activating defense mechanisms against pathogens [50]. This bidirectional signaling forms the basis of complex symbiotic relationships, such as those seen in legume-rhizobia and arbuscular mycorrhizal fungi associations [54]. In summary, microbial communication in agriculture enhances nutrient acquisition, disease resistance, and overall crop productivity. Harnessing and manipulating these signaling pathways holds great promise for the development of sustainable and eco-friendly agricultural practices.

Synthetic and Genetic Engineering Applications Engineered Microbial Products for Agriculture and Medicine

The expanding field of microbial biotechnology has enabled the development of genetically modified microorganisms with enhanced traits for both agricultural and therapeutic applications (Table 3). These engineered strains are capable of producing biofertilizers, bio-fungicides, and biopesticides that are more effective and sustainable alternatives to chemical inputs [20]. For instance, microbes can be modified to secrete higher levels of growth-promoting phytohormones, nitrogen-fixation enzymes, or pathogen-antagonistic compounds, thereby improving plant resilience and productivity under diverse environmental stresses. In the medical field, synthetic biology has facilitated the creation of probiotic strains designed to modulate host physiology.

CC BY 4.0 Deed Attribution 4.0 International

These include bacteria engineered to produce therapeutic peptides, deliver drugs, or interact with host immune cells via engineered signaling pathways [20, 25].

Signal Interference and Quorum Sensing Inhibition

One promising strategy in microbial engineering is quorum sensing interference, also known as quorum quenching. This involves disrupting microbial communication by degrading or inhibiting the production and detection of autoinducers [25]. Quorum sensing inhibitors can be small molecules, enzymes, or structural analogs that block signal-receptor binding or degrade AHLs and peptides, thus preventing the expression of virulence genes and biofilm formation [26]. Quorum quenching has proven effective in reducing infections caused by pathogenic bacteria and mitigating biofilm-associated problems in medical and industrial contexts. Additionally, engineered microbes capable of producing quorum sensing, which can be deployed as biocontrol agents in agriculture to protect crops from microbial pathogens [27].

CRISPR and Synthetic Biology for Signal Modulation

The use of CRISPR-Cas systems and other genome editing tools has revolutionized microbial synthetic biology. These technologies allow for precise editing of microbial genomes to optimize signal production, modify metabolic pathways, and insert novel biosynthetic circuits [31]. For example, bacteria can be engineered to detect specific environmental or physiological signals and respond by producing targeted therapeutic or agricultural compounds. Synthetic circuits can also be designed to mimic natural signaling cascades, enabling microbes to perform complex tasks such as environmental sensing, biosensing, and targeted gene regulation. These approaches enhance the ability of engineered microorganisms to communicate with host cells, modulate their behavior, or convert non-functional cells into functional ones under defined conditions [28]. Together, these synthetic and genetic engineering strategies highlight the growing potential of manipulating microbial signaling for diverse applications, offering precise and programmable solutions for human health, agriculture, and environmental sustainability.

Inter-Kingdom Communication Microbial Response to Host Hormones

One of the most intriguing aspects of microbial signaling is the ability of bacteria to perceive and respond to host-derived molecules, particularly hormones (Table 4). Host hormones such as epinephrine and norepinephrine can influence bacterial behavior through sensor systems like OseC/OseB, which detect these signals and modulate gene expression accordingly [25]. This crosskingdom communication plays a critical role in bacterial colonization, virulence, and biofilm formation, especially in host environments such as the gut. Studies have shown that Escherichia coli and Salmonella enterica can alter their motility, iron acquisition, and toxin production in response to host hormonal cues. These adaptive behaviors demonstrate the profound influence of host signals on microbial physiology [26].

Host Immune Sensing and Microbial Adaptation

Microorganisms are not passive participants in host environments. They actively sense immune system activity and adjust their gene expression to either evade detection or modulate host responses [27]. For instance, certain pathogens can downregulate surface antigens to avoid

immune recognition or upregulate stress response genes to withstand antimicrobial peptides and oxidative bursts. This dynamic interaction often determines the outcome of infection, whether a pathogen establishes disease or is cleared by host defenses. Understanding these molecular dialogues can inform the design of new antimicrobial strategies that target bacterial communication rather than growth, thereby reducing selective pressure for resistance [31].

Stress-Induced Microbial Virulence

Psychological and physiological stress in hosts has been shown to exacerbate microbial virulence. Stress hormones can disrupt gut microbiota composition and compromise barrier function, creating conditions favorable for pathogenic invasion. Through quorum sensing and other signaling pathways, bacteria can detect changes in the host environment and upregulate virulence genes accordingly [25]. This stress-induced modulation of microbial behavior is particularly relevant in chronic diseases, post-operative infections, and immune-compromised individuals. Targeting the signaling interfaces between microbes and host stress pathways may offer novel therapeutic interventions that bolster host resilience and mitigate pathogen aggression. In summary, interkingdom communication between microbes and their hosts is a finely tuned process with significant implications for health and disease. By decoding these signaling networks, scientists can develop tools to modulate microbial behavior, improve host outcomes, and advance precision microbiome-based therapies.

Conclusions

Microbial communication via signaling molecules such as autoinducers, peptides, and secondary metabolites plays a fundamental role in regulating microbial behavior and shaping host-microbe interactions. These signaling mechanisms, particularly quorum sensing, coordinate a wide range of microbial activities including biofilm formation, virulence regulation, and mutualistic symbiosis with host organisms. Through finely tuned communication systems, microbes can influence host immune responses, cellular microenvironments, and even inter-kingdom molecular interactions. In agriculture, these microbial signals are critical for promoting plant growth, enhancing stress tolerance, and defending against pathogens through the activity of beneficial endophytes, PGPR, and engineered biocontrol agents. Similarly, in biotechnology and medicine, microbial signaling pathways have been harnessed to create genetically engineered microbes capable of therapeutic delivery, metabolic modulation, and quorum sensing interference. Advanced tools such as CRISPR and synthetic biology now enable researchers to design microbial strains with enhanced communication capabilities, offering targeted solutions for improving health, productivity, and environmental sustainability. Furthermore, the evolutionary conservation of signaling mechanisms across domains suggests potential for expanding our understanding of cellular communication beyond microbial systems. Future research should focus on unraveling the complexities of microbial signaling in natural and engineered environments, including its role in disease, immunity, and regenerative processes. By manipulating microbial communication systems, we can develop innovative strategies for transforming non-functional or damaged cells into functional units, opening new frontiers in therapeutic and agricultural applications. Understanding and leveraging microbial signaling is not only a cornerstone of microbiology but also a key to advancing next-generation solutions in health, agriculture, and environmental biotechnology.

CC BY 4.0 Deed Attribution 4.0 International

Authors Contributions

Abdullah Al Mamun: Writing – original draft, Supervision, Methodology, Formal analysis, Data curation, Conceptualization. M. Mizanur Rahman: Supervision- supervised the whole work, and all authors approved the final manuscript.

Acknowledgment

The authors wish to thank Agricultural Biotechnology and Microbial Genomics Laboratory and also thanks department of Biotechnology and Genetic Engineering for supporting this research

Reference

- [1] Yajima, A. (2016). Recent advances in the chemistry and chemical biology of quorum-sensing pheromones and microbial hormones. Studies in Natural Products Chemistry, 47, 331–355. https://doi.org/10.1016/B978-0-444-63603-4.00010-3
- [2] Abebe, G. M. (2021). Oral biofilm and its impact on oral health, psychological and social interaction. Int. J. Oral Dent. Health, 7, 127–137. https://doi.org/10.23937/2469-5734/1510127
- [3] Hughes, D. T., & Sperandio, V. (2008). Inter-kingdom signalling: communication between Nature Microbiology, bacteria and their hosts. Reviews 6(2),https://doi.org/10.1038/nrmicro1836
- [4] Balan, B., Dhaulaniya, A. S., Varma, D. A., Sodhi, K. K., Kumar, M., Tiwari, M., & Singh, D. K. (2021). Microbial biofilm ecology, in silico study of quorum sensing receptor-ligand interactions and biofilm mediated bioremediation. Archives of Microbiology, 203, 13–30. https://doi.org/10.1007/s00203-020-02012-9
- [5] Camilli, A., & Bassler, B. L. (2006). Bacterial small-molecule signaling pathways. Science (New York, N.Y.), 311(5764), 1113–1116. https://doi.org/10.1126/science.1121357 https://doi.org/10.1126/science.112135
- [6] Huang, S., Liu, X., Yang, W., Ma, L., Li, H., Liu, R., Qiu, J., & Li, Y. (2022). Insights into Adaptive Mechanisms of Extreme Acidophiles Based on Quorum Sensing/Quenching-Related Proteins. Msystems, 7(2), e01491-21. https://doi.org/10.1128/msystems.01491-21
- [7] Groult, B., Bredin, P., & Lazar, C. S. (2022). Ecological processes differ in community assembly of Archaea, Bacteria and Eukaryotes in a biogeographical survey of groundwater habitats in the Quebec region (Canada). Environmental Microbiology, 24(12), 5898–5910. https://doi.org/10.1111/1462-2920.16219
- [8] Wang, Y., Huang, W., Han, Y., Huang, X., Wang, C., Ma, K., Kong, M., Jiang, N., & Pan, J. (2022). Microbial diversity of archaeological ruins of Liangzhu City and its correlation with environmental factors. International Biodeterioration & Biodegradation, 175, 105501. https://doi.org/10.1016/j.ibiod.2022.105501
- [9] Chamkhi, I., El Omari, N., Benali, T., & Bouyahya, A. (2020). Quorum sensing and plantbacteria interaction: role of quorum sensing in the rhizobacterial community colonization in the rhizosphere. In Quorum Sensing: Microbial Rules of Life (pp. 139–153). ACS Publications. https://doi.org/10.1021/bk-2020-1374.ch008
- [10] Combarnous, Y., & Nguyen, T. M. D. (2020). Cell communications among microorganisms, plants, and animals: origin, evolution, and interplays. International Journal of Molecular Sciences, 21(21), 8052. https://doi.org/10.3390/ijms21218052

CC BY 4.0 Deed Attribution 4.0 International

- [11] Rosset, S. L., Oakley, C. A., Ferrier-Pagès, C., Suggett, D. J., Weis, V. M., & Davy, S. K. (2021). The molecular language of the cnidarian-dinoflagellate symbiosis. Trends in Microbiology, 29(4), 320–333. https://doi.org/10.1016/j.tim.2020.08.005
- [12] Patrad, E., Khalighfard, S., Amiriani, T., Khori, V., & Alizadeh, A. M. (2022). Molecular mechanisms underlying the action of carcinogens in gastric cancer with a glimpse into targeted therapy. Cellular Oncology, 1–45. https://doi.org/10.1007/s13402-022-00715-3
- [13] Tyson, J., Bundy, K., Roach, C., Douglas, H., Ventura, V., Segars, M. F., Schwartz, O., & Simpson, C. L. (2020). Mechanisms of the osteogenic switch of smooth muscle cells in vascular calcification: WNT signaling, BMPs, mechanotransduction, and EndMT. Bioengineering, 7(3), 88. https://doi.org/10.3390/bioengineering7030088
- [14] AlMusawi, S., Ahmed, M., & Nateri, A. S. (2021). Understanding cell-cell communication and signaling in the colorectal cancer microenvironment. Clinical and Translational Medicine, 11(2), e308. https://doi.org/10.1002/ctm2.308
- [15] Shin, Y., Chane, A., Jung, M., & Lee, Y. (2021). Recent advances in understanding the roles of pectin as an active participant in plant signaling networks. *Plants*, 10(8), 1712. https://doi.org/10.3390/plants10081712
- [16] Wolf, S. (2022). Cell wall signaling in plant development and defense. Annual Review of Plant Biology, 73, 323–353. https://doi.org/10.1146/annurev-arplant-102820-095312
- [17] Davares, A. K. L., Arsene, M. M. J., Viktorovna, P. I., Vyacheslavovna, Y. N., Vladimirovna, Z. A., Aleksandrovna, V. E., Nikolayevich, S. A., Nadezhda, S., Anatolievna, G. O., & Nikolaevna, S. I. (2022). Quorum-Sensing Inhibitors from Probiotics as a Strategy to Combat Bacterial Cell-to-Cell Communication Involved in Food Spoilage and Food Safety. Fermentation, 8(12), 711. https://doi.org/10.3390/fermentation8120711
- [18] Duddy, O. P., & Bassler, B. L. (2021). Quorum sensing across bacterial and viral domains. PLoS Pathogens, 17(1), e1009074. https://doi.org/10.1371/journal.ppat.1009074
- [19] Jin, T., Patel, S. J., & Van Lehn, R. C. (2021). Molecular simulations of lipid membrane partitioning and translocation by bacterial quorum sensing modulators. Plos One, 16(2), e0246187. https://doi.org/10.1371/journal.pone.0246187
- [20] Brindhadevi, K., LewisOscar, F., Mylonakis, E., Shanmugam, S., Verma, T. N., & Pugazhendhi, A. (2020). Biofilm and Quorum sensing mediated pathogenicity in Pseudomonas aeruginosa. **Process** Biochemistry, 96. 49–57. https://doi.org/10.1016/j.procbio.2020.06.001
- [21] Zhou, L., Zhang, Y., Ge, Y., Zhu, X., & Pan, J. (2020). Regulatory mechanisms and promising applications of quorum sensing-inhibiting agents in control of bacterial biofilm formation. Frontiers in Microbiology, 11, 589640. https://doi.org/10.3389/fmicb.2020.589640
- [22] Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W., & Greenberg, E. P. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. York. 280(5361). Science (New N.Y.). 295–298. https://doi.org/10.1126/science.280.5361.295 https://doi.org/10.1126/science.280.5361.295
- [23] Wiesmann, C. L., Wang, N. R., Zhang, Y., Liu, Z., & Haney, C. H. (2022). Origins of symbiosis: shared mechanisms underlying microbial pathogenesis, commensalism and mutualism of plants and animals. **FEMS** Microbiology Reviews. https://doi.org/10.1093/femsre/fuac048
- [24] Nealson, K. H., Platt, T., & Hastings, J. W. (1970). Cellular control of the synthesis and

CC BY 4.0 Deed Attribution 4.0 International

- activity of the bacterial luminescent system. *Journal of Bacteriology*, 104(1), 313–322. https://doi.org/10.1128/jb.104.1.313-322.1970
- [25] Pan, J., Zhou, J., Tang, X., Guo, Y., Zhao, Y., & Liu, S. (2023). Bacterial Communication Coordinated Behaviors of Whole Communities to Cope with Environmental Changes. *Environmental Science & Technology*. https://doi.org/10.1021/acs.est.2c05780
- [26] Wang, S., Payne, G. F., & Bentley, W. E. (2020). Quorum sensing communication: molecularly connecting cells, their neighbors, and even devices. *Annual Review of Chemical and Biomolecular Engineering*, 11, 447–468. https://doi.org/10.1146/annurev-chembioeng-101519-124728
- [27] Wu, L., & Luo, Y. (2021). Bacterial quorum-sensing systems and their role in intestinal bacteria-host crosstalk. *Frontiers in Microbiology*, 12, 611413. https://doi.org/10.3389/fmicb.2021.611413
- [28] Tang, M., Liao, S., Qu, J., Liu, Y., Han, S., Cai, Z., Fan, Y., Yang, L., Li, S., & Li, L. (2022). Evaluating Bacterial Pathogenesis Using a Model of Human Airway Organoids Infected with Pseudomonas aeruginosa Biofilms. *Microbiology Spectrum*, 10(6), e02408-22. https://doi.org/10.1128/spectrum.02408-22
- [29] Hwang, O.-J., & Back, K. (2022). Functional Characterization of Arylalkylamine N-Acetyltransferase, a Pivotal Gene in Antioxidant Melatonin Biosynthesis from Chlamydomonas reinhardtii. *Antioxidants*, 11(8), 1531. https://doi.org/10.3390/antiox11081531
- [30] Tang, Y., Chen, H., Lin, Z., Zhang, L., Upadhyay, A., Liao, C., Merkler, D. J., & Han, Q. (2022). Evolutionary genomics analysis reveals gene expansion and functional diversity of arylalkylamine N-acetyltransferases in the Culicinae subfamily of mosquitoes. *Insect Science*. https://doi.org/10.1111/1744-7917.13100
- [31] Cui, F., Zhou, Z., & Zhou, H. S. (2020). Molecularly imprinted polymers and surface imprinted polymers based electrochemical biosensor for infectious diseases. *Sensors*, 20(4), 996. https://doi.org/10.3390/s20040996
- [32] Huang, J., Zhang, L., Wan, D., Zhou, L., Zheng, S., Lin, S., & Qiao, Y. (2021). Extracellular matrix and its therapeutic potential for cancer treatment. *Signal Transduction and Targeted Therapy*, 6(1), 153. https://doi.org/10.1038/s41392-021-00544-0
- [33] Xiao, L., Sun, Y., Liao, L., & Su, X. (2023). Response of mesenchymal stem cells to surface topography of scaffolds and the underlying mechanisms. *Journal of Materials Chemistry B*. https://doi.org/10.1039/D2TB01875F
- [34] Shao, Y., & Fu, J. (2014). Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective. *Advanced Materials*, 26(10), 1494-1533. https://doi.org/10.1002/adma.201304431
- [35] Tanaka, M., Nakahata, M., Linke, P., & Kaufmann, S. (2020). Stimuli-responsive hydrogels as a model of the dynamic cellular microenvironment. *Polymer Journal*, *52*(8), 861–870. https://doi.org/10.1038/s41428-020-0353-6
- [36] Gross, S. M., Dane, M. A., Smith, R. L., Devlin, K. L., McLean, I. C., Derrick, D. S., Mills, C. E., Subramanian, K., London, A. B., & Torre, D. (2022). A multi-omic analysis of MCF10A cells provides a resource for integrative assessment of ligand-mediated molecular and phenotypic responses. *Communications Biology*, 5(1), 1066. https://doi.org/10.1038/s42003-022-03975-9

CC BY 4.0 Deed Attribution 4.0 International

- [37] Al Mamun, A., & Rahman, S. T. (2025). Microbial Signaling Networks: Bridging Cellular Communication with Applications in Health, Agriculture, and Biotechnology. https://doi.org/10.20944/preprints202504.1833.v1
- [38] Lu, P., Takai, K., Weaver, V. M., & Werb, Z. (2011). Extracellular matrix degradation and remodeling in development and disease. *Cold Spring Harbor Perspectives in Biology*, *3*(12), a005058. https://doi.org/10.1101/cshperspect.a005058
- [39] Thomas, G. J., Hart, I. R., Speight, P. M., & Marshall, J. F. (2002). Binding of TGF-beta1 latency-associated peptide (LAP) to alpha(v)beta6 integrin modulates behaviour of squamous carcinoma cells. *British Journal of Cancer*, 87(8), 859–867. https://doi.org/10.1038/sj.bjc.6600545
- [40] Lemmon, C. A., Chen, C. S., & Romer, L. H. (2009). Cell traction forces direct fibronectin matrix assembly. *Biophysical Journal*, 96(2), 729–738. https://doi.org/10.1016/j.bpj.2008.10.009
- [41] Legant, W. R., Chen, C. S., & Vogel, V. (2012). Force-induced fibronectin assembly and matrix remodeling in a 3D microtissue model of tissue morphogenesis. *Integrative Biology:* Quantitative Biosciences from Nano to Macro, 4(10), 1164–1174. https://doi.org/10.1039/c2ib20059g
- [42] DeMali, K. A., Sun, X., & Bui, G. A. (2014). Force transmission at cell-cell and cell-matrix adhesions. *Biochemistry*, 53(49), 7706–7717. https://doi.org/10.1021/bi501181p
- [43] DuFort, C. C., Paszek, M. J., & Weaver, V. M. (2011). Balancing forces: architectural control of mechanotransduction. *Nature Reviews. Molecular Cell Biology*, *12*(5), 308–319. https://doi.org/10.1038/nrm3112
- [44] Elvevoll, E. O., James, D., Toppe, J., Gamarro, E. G., & Jensen, I.-J. (2022). Food Safety Risks Posed by Heavy Metals and Persistent Organic Pollutants (POPs) related to Consumption of Sea Cucumbers. *Foods*, 11(24), 3992. https://doi.org/10.3390/foods11243992
- [45] Xing, H., Lee, H., Luo, L., & Kyriakides, T. R. (2020). Extracellular matrix-derived biomaterials in engineering cell function. *Biotechnology Advances*, 42, 107421. https://doi.org/10.1016/j.biotechadv.2019.107421
- [46] Dalton, C. J., & Lemmon, C. A. (2021). Fibronectin: Molecular structure, fibrillar structure and mechanochemical signaling. *Cells*, 10(9), 2443. https://doi.org/10.3390/cells10092443
- [47] Miller, A. E., Hu, P., & Barker, T. H. (2020). Feeling things out: bidirectional signaling of the cell–ECM interface, implications in the mechanobiology of cell spreading, migration, proliferation, and differentiation. *Advanced Healthcare Materials*, *9*(8), 1901445. https://doi.org/10.1002/adhm.201901445
- [48] Virdi, J. K., & Pethe, P. (2021). Biomaterials regulate mechanosensors YAP/TAZ in stem cell growth and differentiation. *Tissue Engineering and Regenerative Medicine*, *18*(2), 199–215. https://doi.org/10.1007/s13770-020-00301-4
- [49] Lucke, M., Correa, M. G., & Levy, A. (2020). The role of secretion systems, effectors, and secondary metabolites of beneficial rhizobacteria in interactions with plants and microbes. *Frontiers in Plant Science*, 11, 589416. https://doi.org/10.3389/fpls.2020.589416
- [50] Jamil, F., Mukhtar, H., Fouillaud, M., & Dufossé, L. (2022). Rhizosphere signaling: Insights into plant–rhizomicrobiome interactions for sustainable agronomy. *Microorganisms*, *10*(5), 899. https://doi.org/10.3390/microorganisms10050899

CC BY 4.0 Deed Attribution 4.0 International

- [51] Singh, S. K., Wu, X., Shao, C., & Zhang, H. (2022). Microbial enhancement of plant nutrient acquisition. Stress Biology, 2(1), 3. https://doi.org/10.1007/s44154-021-00027-w
- [52] Timofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2023). Plant growth-promoting soil bacteria: Nitrogen fixation, phosphate solubilization, siderophore production, and other biological activities. Plants, 12(24), 4074. https://doi.org/10.3390/plants12244074
- [53] Chaudhary, P., Agri, U., Chaudhary, A., Kumar, A., & Kumar, G. (2022). Endophytes and their potential in biotic stress management and crop production. Frontiers in microbiology, 13, 933017. https://doi.org/10.3389/fmicb.2022.933017
- [54] Patra, D., & Mandal, S. (2022). Non-rhizobia are the alternative sustainable solution for growth and development of the nonlegume plants. Biotechnology and Genetic Engineering Reviews, 1–30. https://doi.org/10.1080/02648725.2022.2152623

